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Stimulated by the invention of an algebraic formula for the coefficients of 
symmetry-adapted linear combinations in a previous paper [1], the representa- 
tions induced by the edge vectors of a symmetric, molecular polyhedron 
A,,B,Cp... are studied in detail. The following objects are defined (in brackets 
the analogous, common objects): Complete systems of standard functions 
(spherical harmonics), polyhedral vector coupling coefficients (3ira-symbols), 
polyhedral Racah coefficients (@symbols), polyhedral isoscalar factors 
(isoscalar factors). The algebraic properties and evaluation methods of these 
coefficients are discussed in order to be used in subsequent papers on quantities 
depending on symmetry-adapted orbitals and symmetry coordinates. 
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1. Introduction 

In a previous paper [1 ], in the following quoted by I, the construction of SALC's 
(symmetry-adapted linear combinations) was described. A central point was the 
reduction of the symmetry-group-representation induced by the change-of- 
position matrices (I, Eq. (2)). Since the multicenter integrals in symmetric molecules 
depend on all the edge vectors of the molecular polyhedron, it will be advisable 
to study the representations induced by all the edge vectors in this polyhedron. 
The position vectors of the atoms are special cases of edge vectors. In this paper 
we will elaborate the mathematical details of these representations, their de- 
composition into irreducible representations, and a certain, "triangular" direct 
product. In subsequent papers [2] this theory is applied to the diagonalization of 
molecular matrices. 
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2. Representations on Polyhedral Edges 

We study a symmetric molecule AmB,Cp... with several sets of symmetrically 
equivalent atoms. The edge vectors in this polyhedral framework are denoted by 
S l, T m etc., where S, T, . . .  give the set of symmetrically equivalent edges, i.e. 
the edges, which are transferable into each other by the symmetry operations g 
of the symmetry group G. The indices numerate the edge vectors within an equiva- 
lent set. It will be necessary to distinguish carefully between parallel and anti- 
parallel edge vectors. Especially the edge vectors between equivalent positions 
A i and A k will be counted twice: S ~ = A i - A  k and S , . = A k - A  i. Since atomic 
orbitals can be centered at different positions, but also at the same one, we will 
accept the null vector as a special edge too. Thus in the tetrahedron of CH4 there 
are seventeen edge vectors: the null vector, the four vectors between C and H, 
and twelve (!) vectors between the H-atoms. 

Each set S of equivalent edges induces a change-of-position representation a s of 
the symmetry group G: 

In  ?n 

The characters 

aS(g) = ~ aS(g) (2) 
i 

are equal to the number of edge vectors invariant under the operation g. We note 
the following property of the matrices aSk(g): 

a~,,(gh) = asm(9) when hS,, = S m (3) 

With regard to potentials, multi-center integrals and other functions of the edge 
vectors we introduce the finite-dimensional, unitary space of functions over the 
discrete set 5~ {S~}. In contrast to the Dirac brackets ( r i G )  for the functions 
over the Euclidean space g = {r} we use round brackets (S l I G) for the functions 
over 5". The unitary space then is defined by 

~//= {(Sz I G) with SIe 5 ~} 

and attached with the scalar product 

(GIF) = E (G I S,)(S, } F)  (4) 
z 

a s now may be regarded as the representation of the group G in the space ~': 

(g- ] G)= Z aL(g)(s  ] G) (5) 
m 

The reduction of the reducible representation a s is equivalent to the search for 
the invariant subspaces of ~//. The quintessence of paper I is, that a s.a. (symmetry- 
adapted) basis in ~' can be constructed with the aid of the s.a. functions over g 
centered at the centre of the polyhedron. We start with a given set of such functions 
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(rlaas), which are transformed according to the irreducible representation 
(component s): 

( g -  lr I e~s)  = Z D~(g){r I c<~t) (6) 
t 

We need several, linearly independent functions for one ~ distinguished by c~, 
because according to the character formula (I, Eq. (3)) 

n(~, S)=(1/ord O). ~ ,~(C)Z(a, C)*as(c) 
C 

the representation ~ may appear repeatedly in the reduction of a s. As in the 
appendix of I we will take into account the multiplicity n(~, S ) >  1. In generaliza- 
tion of the normalized spherical harmonics of Eqs. (4) and (5) of  I we set up the 
following orthonormalized set of standard functions (with respect to ~//) or 
standard coefficients (as coefficients of an unitary transformation): 

Definition: (SllSfl~r)-= E d(Sfi~, a)(S~] e a r )  (7) 

where the coefficients d(Sfl~, e) are determined by 

Z (Sfla, r ]St)(S,}Sy~r)= Z d(Sfia, cO*d(Sya, c<')(c~z~r l S t ) (S ,  le 'ar  ) = 
1 C~Off 

a(/~, ,/) (8) 

The range of a and fl is defined by the multiplicity: 1 ~< a, fi ~< n(~, S). As in 
I (S~ l e a r )  are the s.a. functions ( r  t e a r )  over • taken at the special values S~. 
As usually for n(~, S)>  1 the coefficients d(Sfl~, a) are not determined uniquely 
by (8) and orthonormalized linear-combinations 

(s, I Z c,,(s, I 
Y 

are equivalent to (7). The elimination of this arbitrariness will be handled in a 
further paper [6]. We arrange the following phase convention 

(S, [ Sear)* = (S, l Sea +r) (9) 

Here we stress strongly that against common usage we define the representation 
a + simply by r)(~+)c,s- ~ * ~i~ ~n , -  [Dik(g)] without any basis transformations. For details 
see the appendix. If condition (9) is not met by the functions ( r  [ a,zr), i.e. ( r  I e a r )  = 
~o(ea) ( r  I a~ + r), (9) requires: d(Sfia +, e) = d(Sfl~, ~)*. q)(ea~). 

We now list the properties of the standard functions (S, I Sear): 
1) They are generated from the set of s.a. functions ( r  ] e~r) ,  added in most 

character tables [7], by (7) and (8). 
2) They have the orthogonality relations : 

Z (Se~r}S,)(S, I SflSs)=a(e, fi)a(a, {)6(r, s) (10) 
l 

Z (s, I 1 m) (ll) 

(proof given below) 
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3) Because of 2) they form a complete basis in q/, thus for every ($I 1 G) e 0g : 

(s, I a)= Z (S, l S~r)(S~ar 1 G) 
~ t g b r  

with (Sc~c~r I G)= Z (Sear [ S,)(S, ] G) 

Similar expansions hold for functions of several edge vectors, which will be 
important for instance for multi-center integrals. A case of special interest 
are s.a. spherical harmonics ( r  I Lear) taken at r =  Sz: 

(S~ I Lear)= 2 c(Sflz~, Le)(S, t Sfic~r) (12) 
f l  

where the coefficients c(Sflc~, L~) can be calculated from known quantities : 

c(s~, L~)= F~ (s~r  I s~)(siIL~r) (13) 
/ 

4) They form a unitary matrix, which reduces a ~ (proof  given below). 
5) Likewise they are the coefficients of  the SALC's built up from A(~0)-orbitals 

(if S~ are position vectors): 

(~ [ ~ r ) =  Z (s, I sear)<~-s, I A.~)O) 
l 

(generalization Eq. (18) below) 
We first prove point 4): From (5) follows 

(g-'s, I S~ar) = E ~,(g)(Sm I S=ar) 
#1 

and on the other hand from (6) and (7) 

(g- xS, 1 Sfiar)= ~ Dt'~(g)d(Sfia~, cO(S, [ eat) = ~ D~(g)(St[ Sfiat), (14) 
a t  t 

so that with (8)" 

(ST~t [ S,)ast(g)(Sm t Sfiar)= D#(g)6(fi, y), 
lrn 

what was to be proved. 

It is easy to point out the generalization (10) of (8) by replacing S z by g -  tSl on the 
left hand side, using (14) and summing over all g e G. In order to prove (1 l), we 
abbreviate the left side of (11) by Xlm. Now we have ~1 X u = n(a, S). dimc~ = Z(S), 
the number of the edge vectors in set 5 ~. By the aid ofgSk=S ~ one sees Xu=Xkk, 
so that X u = l .  With (8) one gets ~, ,  X~mXmI=Xu=I, i.e. ~m,z I Xlm[2=0, SO that 
XZm = 0 for m # 1. 

With the standard functions (SzlSe~r) it is possible to generalize the SALC 
coefficients of Eqs. (10) and (24) of I for arbitrary edges: 

K(7ep, Sjea, br)= ~ (am, ~r ] 7ep)(Sj l Seam) (15) 
m 
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As in Eq. (24) of I y takes account of the multiplicity of ~ in the direct product 
x ~4. Because of the orthogonality relations (10) and (11) and those of the Clebsch- 

Gordan coefficients, the SALC coefficients have orthogonality relations too: 

K(y~p, Sja~, ~r). K(V '~ 'p', Sjc~'~ ', &) = a(y, y')6(c, e ')6(p, p')6(a, c~')fi(~, z~') 
jr 

(16) 

~ K(>p, sj~,  ~r).K(~p, Sk~, ~s)=a(j, k)6(r, s) (17) 
o: .:z y z p 

This guarantees the symmetry adaption being a unitary transformation. If the 
edge vectors are selected to be the position vectors of an equivalent, atomic set A, 
then the s.a. MO's as in Eq. (11) or (24) of I: 

I(Ac~, nlfl#)7ep) = ~ K(Vep, Aj~ ,  dr). [Ajnlfi#r> (18) 
jr 

where the AO's defined by (r[Ajnlfldr> = (r-Aj[nlfl6r) are already s.a. and 
connected with the AO's lnlm>, classified according to the angular momentum by 

Inlfl &) = Z (lm I lfl~r). Inlm). (19) 
m 

We insert this into (18) in order to have a general SALC formula with respect to 
the angular momentum quantum numbers : 

](A~, nlfiE)y~p)= ~ M(Tep, Ajc~, (fi~)lm). IAjnlrn) (20) 
j t n  

with 

M(Tzp, Ajc~, (fi6)lm)= ~ K(?cp, Aj~ ,  &)(lrn I lfi~r) (21) 

The orthogonality relations of the M-coefficients are: 

M(ycp, Aje~, (fld)lm). aJ(y 'c ~p', Ajc~'c~ ', (fi'f')lm)= 
i,,, 6('/, 7')b(e, c')6(p, p')6(c~, e')cS(~, ~')6(fi, fi')cS(& ~') (22) 

~ M(~ep, Ajc~z., (fl~)lm).M(Tc p, Akaa,, (fl~)ln)=6(j, k)6(m, n) (23) 
:xafldycp 

The SALC coefficients with respect to general edge vectors can serve to build up 
s.a. two-electron functions or electron-hole functions in the sense of the VB theory. 
Before doing so in Eq. (39) we need some algebraic preparation given in the next 
section. 

In many books the numerical values of the coefficients defined by (7), (15) and (21) 
are calculated by the projection-operator technique or a related one. It may 
therefore be advisable to stop a moment to point out the significance of our 
formulae: Since (7), (15) and (21) are a specification and generalization of I, they, 
of course, can serve for the calculation of SALC's for polyhedra not yet elaborated. 
But our interest now exceeds this direct application. 

Just as in the case of Clebsch-Gordan coefficients extensive numerical tabulation 
does not make obsolete algebraic formulae. On the contrary in the author's 
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opinion only the latter show command over the matter. In consequent tensor 
algebraic calculation the basic, but coordinate-dependent Clebsch-Gordan 
coefficients are eliminated in favour ofinvariants like Racah coefficients or reduced 
matrix elements etc. In the same sense our formulae will make it possible to 
dissolve the SALC coefficients (21) in favour of invariants to be defined below. 
First applications will follow in subsequent papers [2]. The ultimate desideratum, 
of course, is the calculation of energies etc. using no coordinate- or numeration- 
dependent quantities, but only invariants. 

3. Racah Algebra on Coordination Polyhedra 

In order to formulate s.a. objects with respect to several atoms or edges it is 
suitable to number the symmetrically equivalent triangles with the edges S, T 
and U as STUi or shortly d i. We define the following triangular matrices: 

P i m n p = otherwise (24) 

The nomenclature P V  will become clear below. We choose P V  totally symmetric 
in S, T and U. Because - Sin, - T, and - U r form the same triangle with inverted 
sense of  rotation, we define 

One easily verifies the othogonality relations: 

. P v ( - A - S - m  nT-U~pV(Ap/ , i k  l q S T U ) = j ( m ' k ) 6 ( n ' I ) 6 ( P ' q ) 6 ( A ' S T U ) ( 2 6 )  

P V a - S - P V  = 6(n, A ')6(i, k) f (A,  S T U )  (27) 
~,,  i m n p \ k m 

The triangles A i of course induce a representation aA on their part: 

g(A i) = • a~k(g)(Ak) (28) 
k 

Therefore simultaneous operation o fg  on Ai, Sl, T m and U, gives: 

E aJi(g)a,,(g)aqm(g)a,.(g)PV ~ i  S " " r }  (29) 
u.,. l m n /  \ j p  q 

Some reordering gives with (27): 

Z E ? v - - -  - s - r -   ,,(g)aqm(g)ar.(g)PV 
z,,,,q, \ j p q r i l m n J 

=aJi(g)a(a, svu) (30) 

which shows that the triangular matrices couple the representations a s , a T and 
o U to give a s ty  quite as the ordinary vector coupling coefficients V,(~:~ik~ : couple 

x : x c to give A(la). We therefore termed them P V, "polyhedral vector coupling 
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coefficients". There is a difference of the indices i and e. Whereas e indicates the 
repeatedly occurring A(lg ) in the direct triple product ~ x { x c, i is a component 
index of the multidimensional representation a~. Of course it is possible to in- 
terpret P V  as a 4jm-symbol [3], which couples four representations to give 
A~lo); but we shall not follow this way. As the reader will foresee, it is now possible 
to introduce Racah coefficients via the tetrahedra built up by four triangles, re- 
spectively spanned by the six edges STUXYZ.  The symbolical, graphical inter- 
pretation of Racah coefficients [3] is here to be taken literally. These "polyhedral 
Racah coefficients" P W  will carry four additional indices as in the theory of non- 
simply reducible groups [4]. In order to have correct triangular edge vector sums 
according to (24) we have to use some inverse edge vectors: 

\XYZ/ukz=m,,Z q,sZ P m n p / ~j q r p ] \ k  q n s / 

\ 1 m r (31) 

We take for granted A = S - Y Z ,  O-= X T -  Z, A = -  XYU, F = -  S - T - U  and 
omit their notation on the left hand side. The introduction of - S etc. in (26) and 
(27) was somewhat artificial, but necessary in (31). We shall always arrange the 
summations to run over pairs - S n  and Sn in analogy to the ordinary Racah 
algebra, where the summation always runs over an  and ~+n, cf. [4] and the 
appendix. With (26) one obtains from (31) the well-known recoupling relations: 

q n s /  

q r p ]  \ k  q n  s / p') (33) 

By setting p = p '  and summation over m the last one is given a more familiar form 
except for the factor Z(S): 

,,~ \ i m n  p /  \ I m r s /  \ Z y Z / v . ,  

q r p ] \ k  ) (34) 

When we need not distinguish the different triangle STUi, we can sum over i. 
This is equivalent to the reduction ofo -sTy --, A(~o), the reduction coefficient being: 

(sTui  I s T u  A..))  = Z( STU)- 1/2 (35) 
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where Z(STU) is the number of equivalent triangles. Performing the summation 
we get a partly s.a. form of  PV (the totally s.a. form is given below in (40)): 

z(S T U']= p v ( S T U  S T U~= 
\m n p J \Atlo~ m n p ,,I 

Here we have introduced the shorter notation with z, because these coefficients 
will be of much use since they indicate whether or not three edges form a triangle: 

rfS TU~=~Z(STU) -'/2 when S,,,+ T,,+Up=O (37) 
\m  n p / /  ~ 0 otherwise 

The normalization of  (35) and (36) is such that 

- T - U  

and 

~ ( m n p  ] \STU~z(-Rq-T-U) p (38) 

When 9S,.= S,. but 9Tn~ T., there are several triangles STU having one S-edge 
in common:  

\ m n p  / n p /  

Because of  this ambiguity there is in general no simple orthogonality relation 
involving a sum over Sm as for the vector coupling coefficients. This is the reason 
why we had to start with the PV coefficients and not the simpler z. 

As a first application of ~ we are now prepared to write down the above announced, 
s.a. two-electron functions using an anti-symmetrization operator ~r 

j L M  (. ,)  - A  I'm' 2 z i k j (lm, I LM>.d(r l  I Ainlm>(r2 [ BknTm') (39) 
~kmm ' 

We note that (39) in the case of  A = B shows the necessity to distinguish the edge 
vectors Ai-  A k from A k - A i as a different S t. 

Since the representations a s, a r etc. form a closed system of reducible representa- 
tions of the group G, they are in analogy to the representations of a larger group 
H ~  G, which form a closed system of reducible representations of G too. But the 
following is no group chain calculation, because the a representations are not 
irreducible with respect to a common supergroup. In consequence of the analogy 
we also can take over the important concept of  isoscalar factors connecting the 
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PV coefficients with the ordinary V coefficients. To this end we transform the 
coefficients defined in (36), which couple a s x a r x ~r U ~ A(lo) , into the s.a, basis 
using the standard functions (7): 

= ~ (s, I s~p)(r~ [ T/~q)(V, [ V>r) (40) 

where we have used (25). One now makes sure that (40) transforms according to 
the direct product ~ x d x e. Using the Wigner-Eckart theorem one is led to the 
analogue of Racahs factorization lemma [5], the reduced matrix elements being 
the polyhedral isoscalar factors PIs: 

T S T U =~Pis~ (41) 
~a,p fl~q 7er fl~ 7e/ k,P q r/ 

The sum over e, of course, only occurs in non-simply reducible groups. The Pls 
can be calculated by solving (41) and inserting it into (40): 

PIs~ fie y~ = ~ 2 r (Si I S~p)(Tk] Tfl~q)(U~[ Uy~r)V~ pqr vqr ikl i k l 
(42) 

where z can be taken from (37). 

The significance of (42) becomes clear from the fact that the standard functions 
occur in the SALC coefficients and therefore are involved in the integrals of s.a. 
LCAO's. We now are able to evaluate triangular products of standard functions 
and moreover because of the expansion (12) all triangular products of spherical 
harmonics with edge vectors as arguments. 

A further class of coefficients needed in MO calculations is the sum over the 
product of three standard functions of one set of equivalent edges. These coefficients 
are analogous to the integral over three spherical harmonics. Because of the 
completeness of standard functions a product (StlSfl~q)(SllSycr) must be 
expandable in the same set of standard functions: 

(St I Sfigq)(S~ t STvr)= Z f(S, ~a~p, fl~q, ycr)(S, } S~c~p) 
ct~p 

As one easily sees f has the property of a tensor product and therefore can be 
factorized according to the Wigner-Eckart theorem: 

(Sl l Sfldq)(Sl l Sycr)= ~ p  P~(S, ~]lfl~llyc)V~p + #q ~)(St I (43) 

Of course the reduced, "polyhedral matrix element" P~ can be calculated by : 

( ~ + ~  ; )  (44) P~(S, c~l[fl~{17c)= E (S~p  ] S,)(S, I Sfl~q)(S, [ S?cr)V ~ P q 
Ipqr 

The applications will show that a consequent tensor algebraic calculation of  
physical quantities contains the invariants PIs, P and c only, 
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4. Special Cases and Sum Rules 

Two simple, special cases can be evaluated immediately. From (42) follows (we 
abbreviate A(lg)= ~) : 

PIs = 6(A, B)6(~, ~)6(~, fi). (dima,/Z(A)) t/2 (45) 

and from (44): 

P(S, e~ll~[[ye)=a(~, c)6(c~, 7)" (dim~/Z(S)) 1/2 (46) 

The z-coefficients of Eq. (37) have the following sum rule, which is in analogy to 
one of the ordinary V-coefficients [9] : 

~ kk  
From this follows a sum rule of the polyhedral isoscalars: 

(dim ~)l/2Pls(~ A A S)=Z(A)I/2(~(S, O) (48) 

Finally there is an orthogonality relation quite analogously to the ordinary 
isoscalars [5]. The substitution of (41) into (38) yields: 

~PIs*(S T ; )  (R T ;)=6(R,S)6(~,6).dim~/Z(S) (49) 

But there will be no simple ~analogue of the second orthogonality relation because 
of the lack of such a second relation for the v coefficients. 

5. Appendix on Nomenclature 

Since there are so many different conventions in the Racah algebra, we should 
state our notation in this and the subsequent papers. In principle we keep to the 
enlightening synopsis of Butler [4], making only marginal changes. Butler's 
notation is very rich in indices, so that indices of indices are frequent. On the 
other hand the two-line notation of 3j- and 6j-symbols is well established by the 
work of Wigner. Following the work of Griffith [9] it is convenient to distinguish 
the corresponding properties of point groups by prefixes. These are: V for the 
3ira-symbols, W for the @symbols and Is for isoscalar factors. Consequently 
we have termed the polyhedral coefficients PV, PW, and P/s. 

As for the conjugation of a representation ~ there is to say the following. In the 
cited article of Butler occurs the usual notation ~*, for instance in 
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where ~* is defined not only by the conjugation but also by an additional basis 
transformation (again ~ = A(10)): 

dim ~U2[Dm~(g)]* dim 1/2 V 
~ i k  m ] 

Consequently the coefficients 

d i m ~ ' / 2 V ( ~ ;  *)  
\o  m 

must always be carried along when a conjugation is needed. But Butler also has 
introduced a more elegant version, which we indicate by ~ +  

~ \ i  k e_ d ~)eikl 

The position of the indices in Butler's notation on the right side can only be under- 
stood with reference to (~)~k~ and does not express that ~+ is an representation 
of its own right with matrices 

and basis functions 

(r I ~+m)=( r  I~m)*=(a,m I r) (52) 

So we regard (50) as the primal coefficient and get much simpler expressions. 
The whole machinery works without consideration, whether ~+ is equivalent to 
or not. Butler's theorem on conjugation reads: 

= K *r (53) 
v"* k k 

From this follows: 

�9 1 = I s ~  + , 
Is* *a ~ 7~ c~ + fl~ + 7~ 

Piss + fi~+ yc+ (54) 

The 6j-symbol is : 

/ / i j k / 
(55) 

This version is the godfather of our definition of the polyhedral Racah coefficient 
in (31). As in (55) correct sums only can run over pairs of ~i and ~ + i. From (50) 
follows : 

( ;  z~f+\i k / 
V }=~(~, ~)6(i, k)-dim 1 /2  (56) 
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Since there is no phase factor in this relation, none occurs in Eq. (48). All this is 
more complicated if ~* is used. 

As for the Clebsch-Gordan coefficients occurring in the SALC coefficients (15) 
and (21) we have the connection: 

( 2  + ) (gin ] z~m, dn) = dim c 1/2K~(~de) V~ (57) 

According to the sensible phase condition of Butler we choose K~(~d~)= 1 for 
the point groups, but for SU(2) K(jkl)= (-  1) j-k+z in accordance with Condon and 
Shortley. 

Since for the group SU(2) the 3jm-symbols are well established with other con- 
ventions, we give the following relation: 

(Jm k _ J  k (58) 

It is usual to use the same symbol V for the coefficients in different bases, i.e. 

V ( t ~ 7 )  a n d i n a s u b g r ~  V a~ ( ~ c 

In this sense we have used the same symbol PV in (24) and (36) and likewise the 
same r in (36) or (37) and (40). 
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